Принцип работы и отличия заземления от зануления. Системы заземления TN-S, TN-C, TNC-S, TT, IT
Пт. Апр 26th, 2024

Для чего необходимо заземление



Заземление

Из нормативной документации ГОСТа № 12.01.009-76 следует, что защитное заземление – это создание единого контура с землей и металлическими токоведущими частями, которые в процессе эксплуатации электротехнических приборов могут оказаться под напряжением, например, корпус микроволновой печи или стиральной машины.

Заземление требуется, чтобы при образовании напряжения в тех местах, где его быть не должно, электричество уходило в землю. Это позволяет предотвратить поражение током жителей квартиры или дома. Как правило, подобные явления наблюдаются при нарушении целостности изоляционного слоя и касания токоведущей жилы корпуса.

Типы заземления в бытовых условиях


В бытовых условиях правильно реализованная система заземления гарантирует бесперебойную работу всех электрических приборов. Во времена существования Советского Союза в домах не было большого скопления электроустановок, следовательно, такая мера безопасности практически не использовалась.

В то время широкое распространение получила эксплуатация системы TN-C, в которой заземляющий провод РЕ коммутировался с рабочим нулем в единую токопроводящую жилу РЕN, а к квартире подключался двухжильный провод. Эта система устарела, на замену пришла новая — TN-C-S. Ее особенность заключается в разъединении в распределительном щитке провода PEN на РЕ и N.

Все современные здания или строения, подлежащие модернизации, обслуживаются по трех- или пятипроводной схеме. В помещение подается три линии:

  • земля;
  • рабочий ноль;
  • фаза.

Все вычислительные и бытовые приборы современного образца адаптированы под трехпроводную систему. Штекеры и розетки оснащены специальными клеммами заземления.

Если здание устаревшее и не оснащено системой заземления, а проводка двухпроводная, все современные трехпроводные электротехнические приборы утрачивают свои качества. Например, сетевой фильтр становится обычной переноской. В этом случае установка зануления в квартире согласно нормативному документу ПУЭ 1.7.132 запрещена.

Что такое зануление электрических приборов



Из нормативной документации ГОСТа № 12.01.009-76 следует, что зануление – это преднамеренное электрическое соединение с нулевым защитным проводником нетоковедущих частей электрооборудования, которые могут оказаться под напряжением в результате неисправностей.

Есть понятие – глухозаземленная нейтраль. На трансформаторные подстанции по ЛЭП приходит 3 фазы. Глухозаземленная нейтраль – это собственное заземление, которое установлено вокруг. Он идет от подстанции на жилые дома и здания с фазными проводами.

Зануление реализуется следующим образом: в распределительном щитке делают разводку, которая идет с глухозаземленной нейтрали и разбивается перед автоматом на ноль, который идет в квартиру. По существу это так и останется глухозаземленная нейтраль, которая используется для зануления.

Занулять оборудование от рабочего автомата запрещено, это опасно для жизни.

Если процесс зануления благополучно завершен, при касании корпуса включенного устройства с токоведущей оголенной жилой произойдет замыкание и сразу сработает автомат на вводе в квартиру.

Зануление и заземление – в чем разница

Обе системы защиты выполняют одинаковую функцию – защищают домочадцев от поражения электрическим током при касании оголенного провода или неисправных электроустановок. Разница заключается в том, что зануление моментально обесточивает помещение при опасном контакте, а заземление отводит всю «опасность» в землю.

Отличие по области применения



Основное правило, которые должны знать все электромонтажники – одновременно реализовать оба способа защиты запрещается. Если есть возможность организовать заземление, рассматривать вариант зануления не стоит.

  • В многоквартирных зданиях заземление монтируют по двум сторонам здания или вокруг. Старые здания в большинстве своем исключения, в них вовсе может отсутствовать контур. В загородных домах реализация заземляющего контура — забота домовладельца. Как правило, заземляющий контур имеет треугольную форму.
  • Защитное зануление в квартирах применяется лишь при отсутствии заземления. Как правило, речь идет о многоквартирных домах старого образца. Реализуя этот способ защиты, дополнительно требуется приобретать и устанавливать автоматы и УЗО.

В промышленных отраслях зануление представляет собой одну из составляющих общего заземления больших помещений и всего оборудования, находящегося в них. Зануление в бытовых условиях — не совсем безопасный способ коммутации заземляющего контура электрических приборов к рабочему нулю.

Что лучше



Подготовка заземляющего контура

Заземление в сравнении с занулением имеет большое количество преимущественных особенностей.

  • Заземляющий контур можно реализовать самостоятельно в домашних условиях. Для этого потребуется небольшое количество металла и сварочный аппарат. Если же говорить о занулении, то для реализации защиты требуются знания, которые связаны не только с проведением подсчетов, но и выбором наиболее подходящей точки подсоединения провода к нейтрали.
  • Если произойдет обрыв нулевого провода в распределительном щитке, система зануления сразу выйдет из строя и будет неработоспособной. Заземление в этом случае имеет превосходство, поскольку используемый провод РЕ не отваривается и не отгорает. Рекомендуется раз в год проверять его состояние и при необходимости подтягивать клеммы.

Таким образом, лучше отдавать предпочтение заземлению, поскольку оно более эффективное и простое в реализации. Сделать его можно самостоятельно, не имея особых навыков.

Конструкция контура

Составные части

Уже упоминавшееся ранее сопротивление заземления (Rз) контура – основной параметр, контролируемый на всех этапах его эксплуатации и определяющий эффективность его применения. Эта величина должна быть настолько малой, чтобы обеспечить свободный путь аварийному току, стремящемуся стечь в землю.

Обратите внимание! Важнейшим фактором, оказывающим решающее влияние на величину сопротивления заземления, является качество и состояние грунта в месте обустройства ЗУ. Исходя из этого, рассматриваемое ЗУ или заземляющий контур ЗК (что для нашего случая – одно и то же) должны иметь конструкцию, удовлетворяющую следующим требованиям:

Исходя из этого, рассматриваемое ЗУ или заземляющий контур ЗК (что для нашего случая – одно и то же) должны иметь конструкцию, удовлетворяющую следующим требованиям:

  • В её составе необходимо предусмотреть набор металлических прутьев или штырей длиной не менее 2-х метров и диаметром от 10-ти до 25-ти миллиметров;
  • Они соединяются между собой (обязательно на сварку) пластинами из того же металла в конструкцию определённой формы, образуя так называемый «заземлитель»;
  • Кроме того, в комплект устройства входит подводящая медная шина (её ещё называют электротехнической) с сечением, определяемым типом защищаемого оборудования и величиной токов стекания (смотрите таблицу на рисунке ниже).


Таблица сечений шин

Эти составляющие устройства  необходимы для соединения элементов защищаемого оборудования со спуском (медной шиной).

Различие по месту устройства

Согласно положениям ПУЭ, защитный контур может иметь как наружное, так и внутреннее исполнение, причём к каждому из них предъявляются особые требования. Последними устанавливается не только допустимое сопротивление контура заземления, но и оговариваются условия измерения этого параметра в каждом частном случае (снаружи и внутри объекта).

При разделении систем заземления по их местонахождению следует помнить о том, что лишь для наружных конструкций корректен вопрос о том, как нормируется сопротивление заземлителя, поскольку внутри помещения он обычно отсутствует. Для внутренних конструкций характерна разводка по всему периметру помещений электротехнических шин, к которым посредством гибких медных проводников подсоединяются заземляемые части оборудования и приборов.

Для элементов конструкций, заземлённых снаружи объекта, вводится понятие сопротивления повторного заземления, появившееся вследствие особенной организации защиты на подстанции. Дело в том, что при формировании нулевого защитного или совмещённого с ним рабочего проводника на питающей станции нейтральная точка оборудования (понижающего трансформатора, в частности) уже заземляется один раз.

Поэтому когда на ответном конце того же провода (обычно это PEN или PE шина, выводимая непосредственно на щиток потребителя) делается ещё одно местное заземление, его с полным основанием можно назвать повторным. Организация этого вида защиты показана на рисунке ниже.


Повторное заземление

Важно! Наличие местного или повторного заземления позволяет подстраховаться на случай повреждения защитного нулевого провода PEN (PE – в системе электропитания TN-C-S). Такая неисправность в технической литературе обычно встречается под наименованием «отгорание нуля»

Такая неисправность в технической литературе обычно встречается под наименованием «отгорание нуля».

Дополнительные элементы

Как в случае с заземлением, так и при занулении для реализации защитных функций должны применяться дополнительные проводники (медные провода), обеспечивающие надёжное соединение с ЗУ или с нулёвым контактом, соответственно.

Защитное заземление

В первом случае этот проводник протягивается от защищаемой точки до контакта заземлителя и выполняется в виде медной оплётки. В ситуации с занулением такой же медный проводник прокладывается по скрытым местам помещений и других строений до распределительного шкафа, где его конец фиксируется на главной заземляющей шине (ГЗШ). Сюда же заводится нулевой рабочий проводник, входящий в состав подводящего электроэнергию силового кабеля.

Важно! Согласно требованиям организации зануления (смотрите ПУЭ), использование для крепления этих двух проводников одного болта или клеммного контакта недопустимо, что объясняется различными режимами их работы.

В завершении сравнения двух методов защиты объектов от поражения электрическим током необходимо отметить следующее. Оба эти способа (как зануление, так и заземление), по сути, выполняют одну и ту же функцию, состоящую в снижении опасного потенциала до приемлемого уровня. Занули вы какую-то точку оборудования или защити её с помощью ЗУ, эффект будет примерно один и тот же.

Особенности зануления в квартире

У потребителя часто возникает вопрос: что необходимо занулять в квартире, а чего делать не следует? Коротко ответим на этот вопрос. Сначала расскажем чего делать не следует. Зануление в квартире не рекомендуется использовать для изделий, которые заземлены через трубы. К ним относятся металлические ванны, умывальники, смесители и другие предметы, связанные с землей через стальные трубы. В случае зануления этих изделий можно получить поражение электрическим током при включении бытовой техники. Выравнивать потенциалы металлических предметов на кухне, в ванной и туалете следует используя заземление.


Все бытовые приборы в квартире необходимо занулять. В новых домах эта проблема, как правило, решена, так как нейтраль уже подведена к розеткам, а все современные бытовые приборы имеют вилку с заземляющим контактом. В старых домах электропроводка выполнена по двухпроводной схеме. В этом случае для зануления бытовой техники необходимо завести отдельный провод от квартирного электрического щитка, что позволит занулить оборудование через розетки.

Что такое зануление и как его правильно устроить

Схема монтажа выглядит следующим образом. Пришедшая к вводному автомату нейтраль раздваивается, каждая из жил идет на отдельную шину. Одна из шин становится нулевой, а вторая заземляющей. От шины нейтрали жилы идут через автоматику и дальше на все нулевые контакты потребителей квартиры. Заземляющая соединяется с корпусом вводного щита, провод желто-зеленого цвета от нее идет на соответствующие контакты розеток и осветительные приборы, которые этого требуют. Соприкосновение заземляющего провода  с нулевым после защитной автоматики запрещено.

Вывод заземления из-под земли. Ниже, на определенном расстоянии находится контур
Вывод заземления из-под земли. Ниже, на определенном расстоянии находится контур

Важная информация! Неправильный монтаж защитного зануления приводит к отгоранию жил кабелей, пожару. Так же возможно поражение электрическим током вплоть до летального исхода.

3.2. Принцип действия защитного заземления

Корпус электродвигателя или трансформатора, арматура электрического светильника или трубы электропроводки нормально не находятся под напряжением относительно земли благодаря изоляции от токоведущих частей. Однако в случае повреждения изоляции любая из этих металлических частей может оказаться под напряжением, нередко равным фазному. Электродвигатель с пробитой на корпус изоляцией часто электрически соединен с машиной, которую он приводит в движение, — например, установлен на станке. Таким образом, рабочий, взявшись за рукоятки управления станком, может нечаянно попасть под напряжение. Чтобы уменьшить опасность поражения людей при повреждениях изоляции токоведущих частей, применяют ряд мер, среди которых наиболее распространено защитное заземление металлических частей электроустановок, обычно не находящихся под напряжением, и их зануление.

Защитное заземление состоит в том, что заземляемые металлические части соединяют электрическим проводником с заземлителем, то есть с металлическим предметом, находящимся в непосредственном соприкосновении с землей или с группой таких предметов. Чаще всего — это стержни из угловой стали, забитые в землю вертикально и соединенные между собой под землей приваренной к ним стальной полосой. Благодаря защитному заземлению напряжение, под которое может попасть человек, прикоснувшись к заземленной части, значительно снижается. Однако неверно распространенное мнение, что это напряжение равно нулю, так как все, что электрически связано с землей, должно иметь потенциал земли, то есть нуль. Дело в том, что землю можно рассматривать как электрический проводник с некоторым сопротивлением электрическому току, с падением напряжения вдоль пути тока, то есть с различным потенциалом точек земли около заземлителя и на большом расстоянии от него, где потенциал действительно можно считать нулевым.

Если представить себе заземлитель полусферы (рис. 1), то ток в земле растекается во все стороны от этого заземлителя в радиальных направлениях. Сечение «земляного проводника» определяется поверхностью полусфер того или иного радиуса и по мере увеличения радиуса возрастает. Соответственно уменьшается сопротивление грунта растеканию тока. Как показывают опыты, падение напряжения на участке однородного грунта радиусом в 1 м от поверхности заземлителя составляет около 68% от всего напряжения на заземлителе, то есть от напряжения между заземлителем и точками нулевого потенциала, которые располагаются на расстоянии около 20 м от такого заземлителя. Приблизительно так же, как на рис. 1, выглядит эта кривая при другой конструкции сосредоточенного заземлителя.

На расстоянии более 20 м от одиночного сосредоточенного заземлителя падение напряжения в слоях земли от тока, растекающегося с заземлителя, уже практически не обнаруживается. Пространство вокруг заземлителя, где обнаруживается ток растекания, называется полем или зоной растекания. Сопротивление заземлителя относительно земли (то есть относительно точек грунта с нулевым потенциалом) включает в себя, кроме сопротивления растеканию тока в земле, также сопротивление току при прохождении по самим заземлителям и переходное сопротивление в электрическом контакте между металлическим заземлителем и ближайшими к нему слоями грунта.

Рис. 1 Растекание тока в земле от сосредоточенного заземлителя и кривая изменения потенциала на поверхности земли по мере удаления от заземлителя

Последние две составляющие очень малы по сравнению с первой, даже если заземлители стальные и покрыты слоем ржавчины (но не краски). Поэтому под сопротивлением заземлителя относительно земли часто понимают его сопротивление растеканию, однако, точнее, сопротивление заземлителя — это отношение напряжения на нем (его потенциал) к току, который через него протекает при повреждении изоляции одной из фаз:

Напряжение на заземленном корпусе электрооборудования Uк отличается от напряжения заземлителя Uзна величину падения напряжения в заземляющих проводниках, соединяющих корпус с заземлителем. Но можно считать Uз ≈ Uк.

Хотя за пределами поля растекания ток в земле практически не обнаруживается, не следует считать, что в этом месте его нет. Для наличия электрического тока необходим замкнутый контур. Ток с провода, где повреждена изоляция, протекает через заземлитель и землю на провода других фаз в сети с незаземленной нейтралью через активное сопротивление их изоляции и через емкостные сопротивления этих проводов относительно земли. В сети с заземленной нейтралью ток от места замыкания течет главным образом к этой нейтрали, но не только по пути с наименьшим индуктивным сопротивлением (непосредственно под проводами линии), а и по другим путям, немного напоминающие силовые линии поля. На силу тока, протекающего через защитное заземление, влияет сопротивление всех элементов цепи этого тока, в том числе сопротивление заземлителя нейтрали.

Если человек, находясь на земле в потенциальном поле заземлителя, прикоснется к заземленному корпусу оборудования с поврежденной изоляцией, он окажется под действием разности потенциалов между корпусом и точкой поверхности земли, на которой он стоит (рис. 1). Эту разность называют напряжением прикосновения Uпр. Оно в общем случае составляет лишь часть напряжения заземлителя или равного ему напряжения на корпусе Uкотносительно точек земли с нулевым потенциалом:

где

Iз — ток, стекающий с заземлителя;

Rз — сопротивление заземлителя;

α — коэффициент прикосновения (меньше единицы) который показывает, какую часть от напряжения на корпусе составляет напряжение прикосновения.

Величины α и Uпрзависят от расстояния между ногами человека и заземлителем (чем дальше, тем больше) и от крутизны кривой спада потенциала, которая может быть более пологой при сложной конструкции заземлителя (чем положе, тем лучше условия безопасности). К телу человека приложена лишь часть напряжения прикосновения, потому что последовательно с сопротивлением тела включено электрическое сопротивление обуви, пола и сопротивление растеканию тока в земле от ног человека. Часто под напряжением прикосновения понимают именно падение напряжения в теле человека между точками с разным потенциалом, которых он одновременно касается рукой и ногами или двумя руками.

Между ступнями человека, идущего в потенциальном поле заземлителя, действует разность потенциалов, называемая шаговым напряжением Uш. Как видно из рисунка, оно тем больше, чем ближе человек к заземлителю и чем шире шаг. При расчетах принимают, что шаг человека равен 0,8 м. Для крупных животных расстояние между передними и задними ногами больше, отчего напряжение шага, действующее на них, выше; оно опаснее, чем для людей, еще и потому, что вызванный им ток проходит у животных через грудную клетку. Поэтому, например, корова может погибнуть при значительно меньшем напряжении на заземлителе, к которому она приближается (или на большем расстоянии от упавшего на землю провода), хотя для крупных животных значение смертельных токов намного больше, чем для людей. Установлено, что при одиночном вертикальном стержневом заземлителе ток через него в 3,5 А уже может создать смертельное для животных шаговое напряжение.

На рисунке 2 показана сеть без заземленной точки с сопротивлением изоляции проводов относительно земли r1и r2. После пробоя изоляции одного из проводов на металлический корпус, который связан с защитным заземлением, обладающим сопротивлением растеканию тока в земле r3, этот корпус будет иметь относительно участков земли с нулевым потенциалом напряжение, равное падению напряжения на r3от тока через него.

Так как сопротивление изоляции проводов относительно земли значительно больше сопротивления растеканию тока в земле, ток через заземлитель практически не зависит от сопротивления заземлителя. Поэтому с уменьшением сопротивления заземлителя пропорционально уменьшается напряжение прикосновения. Уменьшается и опасность от прикосновения. Однако такое же напряжение появится на корпусах и неповрежденного оборудования, присоединенных к тому же защитному заземлению. Это один из недостатков заземления как защитного мероприятия.

Рис. 2. Защитное заземление в однофазной сети без заземленной точки

Система заземления ТТ

В предыдущих системах все заземляющие устройства соединяются в единую цепь проводниками PEN или (и) РЕ. В системе ТТ потребитель имеет свой собственный контур заземления, не связанной с проводником PEN питающей линии. Все его электрооборудование связано с этим контуром проводниками РЕ.

Таким образом, исчезают проблемы с возможным обрывом питающего потребителя PEN- проводника. Он используется как нулевой рабочий и никак не связан с корпусами.

Защита с помощью предохранителей и автоматических выключателей у потребителя работает только на устранение междуфазных замыканий, а также – между фазой и нулевым проводником.

Мерой же для защитного отключения служит обязательная установка УЗО у потребителя.

Внедрение этого метода заземления имеет показания к применению и при большой протяженности питающих линий, когда повышенное сопротивление петли фаза-нуль не позволяет произвести защитное отключение в нормируемое время.

Подробнеео системе TT можно почитать в отдельной статье.

Что такое зануление электроприборов: возможности применения

Защитное зануление электроприборов используется, если смонтировать заземление невозможно. Такая ситуация может возникнуть в случае, если многоквартирный дом построен в советские времена. Своего контура у таких домов нет, а самостоятельно его устроить не получится.

Защитное зануление – это система, выполняющая отличную от заземления работу. Если второе призвано увести напряжение в землю, исключая возможность поражения электрическим током, то первое выполняется с целью создания (при пробое изоляции и попадания напряжения на корпус) короткого замыкания. В этом случае срабатывает автоматика и электричество отключается.

Источником опасности может стать любой незаземленный электроприбор
Источником опасности может стать любой незаземленный электроприбор

Важная информация! В многоквартирных домах современной постройки и частных секторах в наши дни монтаж зануления запрещен. Это продиктовано целями безопасности проживающих. Автоматика может подвести, что приведет к непоправимым последствиям.

Защитное зануление требует правильного монтажа. Не стоит думать, что достаточно бросить перемычку с нулевого контакта внутри розетки на заземляющий. Это категорически запрещено. Рассмотрим ситуацию, когда уже «подгоревший» ноль подвергается нагрузке короткого замыкания, а автомат еще не успевает сработать. Ноль отгорает, исключив замыкание, но прибор остается под напряжением. Человек, надеясь на отсутствие электричества (света ведь нет, ноль отгорел) на ощупь продвигается к выходу и облокачивается на корпус бытового прибора, находящегося под напряжением. Исход ясен, не так ли?

Правильно  выполненное заземление вкупе с защитной автоматикой – залог спокойствия проживающих в доме или квартире
Правильно  выполненное заземление вкупе с защитной автоматикой – залог спокойствия проживающих в доме или квартире

Как рассчитать систему заземляющих элементов

Знакомство с порядком расчета заземления следует начать с выяснения того, какую величину принимать за определяющий показатель и для какой цели применяется сама процедура. Этим параметром является сопротивление защитного контура, зависящее от таких технических показателей, как:

  • Габариты и форма заземляющей системы.
  • Глубина ее погружения в землю.
  • Состояние грунта в данной местности.

Важно: Большой «вклад» в формирование проводимости цепочки стекания тока вносит переходное сопротивление контактов в конструкции самого ЗУ.

Известно, что контур искусственного заземления состоит из комплекта вертикальных и горизонтальных металлических элементов и медной соединяющей их шины. С целью обеспечения минимального сопротивления стеканию тока в землю необходимо:

  1. использовать заземляющие системы с большой площадью контакта с грунтом (при необходимости – увеличить количество вертикальных штырей и их шаг);
  2. постоянно следить за состоянием почвы в месте расположения устройства и уметь определять удельное сопротивление грунта;
  3. контролировать надежность сварных соединений.

Для оценки реальных показателей эффективности ЗУ необходимо ознакомиться с существующими методиками измерения проводимости заземляющей системы.

А как быть, если в вашем доме вообще не предусмотрено защитное заземление

Понятное дело, при проведении капитального ремонта, электрики заменят проводку в соответствии с Правилами устройства электроустановок. Как минимум, в вашем вводном щитке появится три независимых провода: фаза, рабочий ноль и защитное заземление. Останется лишь заменить проводку в розеточной сети.

Но капитальный ремонт может быть выполнен через несколько лет, а вы уже сегодня пользуетесь бойлером и стиральной машинкой без заземления, или того хуже — с защитным занулением. Выход один: организовывать заземление самостоятельно. Если вы живете в частном доме — техническая сторона вопроса существенно упрощается. А вот для многоэтажек, стоимость и сложность работ зависит от этажа.

Как вариант — организовать вскладчину с соседями шину заземления, с распаячными коробками на каждой лестничной клетке.

Заземление

Шина должна быть неразъемной до самого ввода в грунт. Вблизи фундамента, желательно не в дорожном покрытии, а на клумбе, организуется контур заземления согласно Правилам устройства электроустановок. Каждый жилец подъезда может подключится общей шине и завести «землю» в квартиру. Далее есть два варианта:

  1. Организовать контактную группу заземления в распределительном щитке, и заменить всю электропроводку на трехжильную.
  2. Внутри плинтуса, протянуть земляной кабель под каждую розетку, и завести его в монтажные коробочки.

При любом способе, вы защитите и свои электроприборы, и главное — свое здоровье.

Как отличить рабочий ноль и защитное заземление

Разумеется, проверять сопротивление между «нулевым» и «земляным» проводами не следует, особенно если энергосистема под напряжением. В общую щитовую вас тоже никто не пустит. Поэтому, проверять правильность разведения нуля и земли, будем с помощью мультиметра (бытового тестера).

Поскольку точки ввода заземляющих устройств (ноль на подстанции и шина заземления в доме) находятся на удалении друг от друга, между ними есть определенное сопротивление. Грунт, даже влажный, не является идеальным проводником. Если организовать электрическую цепь без нагрузки, мы увидим разницу в потенциалах.

Подключаем измерительный прибор к фазному контакту и рабочему нолю. На схеме это будет цепь «А». Фиксируем значение.

Схема 5

Сразу же подключаем тестер к фазному проводу и контакту защитного ноля. На схеме это цепь «Б». Разницы в потенциале нет: прибор зафиксирует одинаковое значение напряжения. Почему так произошло? При объединении рабочего и защитного ноля, ток в обоих вариантах измерения, фактически протекает по одному и тому же проводу. Сопротивление не меняется, потерь нет, падения напряжения не происходит.

Если ваши результаты измерения показали одинаковое напряжение – проводка подключена с нарушениями Правил устройства электроустановок.

Что произойдет при разнесенном рабочем ноле и защитном заземлении?

Читайте также:  ЭКО200 измеритель напряжения прикосновения и тока короткого замыкания

Схема 6

При подключении прибора к фазе и нолю, падения напряжения практически нет (на схеме это цепь «А»). Вы увидите действительное значение рабочего напряжения в сети. Подключив тестер к фазному проводу и защитному заземлению, вы замеряете потенциал в длинной цепи. Чтобы замкнуть круг, электрический ток (на схеме цепь «Б») проходит по реальному грунту между точками физических контактов «земли». Учитывая сопротивление грунта, произойдет падение напряжения от 5% до 10%. Прибор покажет более низкое напряжение.

Это говорит о том, что ваша электропроводка организована правильно, у вас имеется настоящее разнесенное защитное заземление. При наличии правильно подобранных автоматов, электрооборудование и пользователи надежно защищены.

Мы разобрались, в чем разница между заземлением и занулением. Польза от правильной организации электроснабжения очевидна.

Разберем ситуацию со схемами

С точки зрения протекания электрического тока, отличия между заземлением от занулением нет. Нулевой провод в любом случае имеет электрический контакт с физической землей.

Схема 3

Соответственно, при замыкании фазы на корпус, произойдет то самое короткое замыкание, и сработает отключение защитного автомата. Разумеется, (при условии правильного подключения: розетка должна иметь третий земляной контакт, как и электроприбор. По этой причине, электрики, нарушая требования Правил устройства электроустановок, часто разводят земляную шину от нулевого контакта вводного щитка.

Представим ситуацию, когда нулевой провод по какой-то причине разорван:

  • потеря контакта по причине коррозии (в старых многоэтажках это рабочая ситуация);
  • механический разрыв кабеля вследствие ремонтных работ с нарушениями технологии (к сожалению, тоже не редкость);
  • несанкционированное вмешательство доморощенного «электрика»;
  • авария на подстанции (возможно отключение только нулевой шины).

На схеме это выглядит следующим образом:

Схема 4

При организации защитного зануления, электрическая цепь между физической «землей» и контактом заземления электроприбора разрывается. Установка становится беззащитной. Кроме того, свободная фаза без нагрузки может создать потенциал, равный входному напряжению на ближайшей подстанции. Как правило, это 600 вольт. Можно представить, какой ущерб будет нанесен включенному в этот момент электрооборудованию. При этом утечки тока на физическую землю нет, и защитный автомат не сработает.

Представьте, что в этот момент, вы одновременно коснетесь фазы (пробой на корпус электроустановки), и металлического предмета, имеющего физическую связь с грунтом (водопроводный кран или батарея отопления). Можно получить поражение электротоком при напряжении 600 вольт.

А теперь посмотрим, в чем разница между заземлением и занулением (на нашей схеме). При разрыве нулевой шины, просто пропадет питание на всех электроустановках в этой цепи. Поражения электротоком не будет, ни при каких обстоятельствах: электрическая цепь между физической землей и контактом заземления электроприборов не нарушена. Здоровье мы уже сохранили. Теперь посмотрим, что произойдет с электроустановками. Максимум ущерба — это перегоревшая лампа накаливания, ближайшая к вводному щитку. Причем неприятность произойдет лишь в случае повышения напряжения на фазном проводе. Сила тока возрастет (согласно закону Ома), сработает автомат защиты, и возможно, остальные электроприборы не пострадают.

Именно по этой причине, ПУЭ жестко предписывают: защитное заземление и зануление электроустановок должно быть организовано независимо друг от друга, с помощью разных линий.

Для справки: Обычно используется цветовая маркировка проводов:

  1. Фаза — коричневого или белого цвета.
  2. Рабочий ноль — синего цвета.
  3. Защитное заземление — желто-зеленая оболочка.

Провод

Если у вас жилье современной постройки, значит зануление и заземление выполнено согласно Правилам устройства электроустановок. Это легко проверить, взглянув на вводной кабель в щитке. Кроме того, вы сами можете проверить правильность подключения.

2. Системы с изолированной нейтралью

Во всех описанных выше системах нейтраль связана с землей, что делает их достаточно надежными, но не лишенными ряда существенных недостатков. Намного более совершенными и безопасными являются системы, в которых используется абсолютно не связанная с землей изолированная нейтраль, либо заземленная при помощи специальных приборов и устройств с большим сопротивлением. Например, как в системе IT. Такие способы подключения часто используются в медицинских учреждениях для электропитания оборудования жизнеобеспечения, на предприятиях нефтепереработки и энергетики, научных лабораториях с особо чувствительными приборами, и других ответственных объектах.

Система IT

Система заземления IT

Классическая система, основным признаком которой является изолированная нейтраль источника – «I», а также наличие на стороне потребителя контура защитного заземления – «Т». Напряжение от источника к потребителю передается по минимально возможному количеству проводов, а все токопроводящие детали корпусов оборудования потребителя должны быть надежно подключены к заземлителю. Нулевой функциональный проводник N на участке источник – потребитель в архитектуре системы IT отсутствует.

Требования к заземлению и занулению



В защитном занулении происходит разрыв между землей и контактом заземления электроприбора

Главное требование – правильная реализация, которая обеспечит полную безопасность и защиту человека от поражения электрическим током в случае аварийных или нештатных ситуаций.

Основные требования к заземлению – отвод напряжения в слои почвы. Земля поглощает электрический ток, предотвращая нанесение урона человеческому здоровью.

Требования к занулению – отключение защитной автоматики, если произошло соприкосновение токонесущих элементов или оголенных проводов с поверхностями металлических  корпусов электротехнических деталей и бытовой техники, где напряжения быть не должно.

Что такое заземляющее устройство: это должен знать каждый

Заземляющим устройством называют конструкцию в форме треугольника или квадрата из металлических шин или уголков, сваренных между собой, а также штырей, вбитых в землю на 1.5-2 м (бывает и более), которая имеет минимальное сопротивление. ЗУ соединяется с заземляющей шиной в распределительном щите.

Техническое исполнение систем заземления

Существует несколько схем соединения с разным составом защитных и рабочих проводников:

  • TN-C;
  • TN-C-S;
  • IT.

На разновидность заземления указывает первая буква в обозначении:

  • I — токоведущие элементы не касаются грунта;
  • T — нейтраль источника электропитания заземлена.

Способ заземления открытых проводников определяется по второй букве:

  • N — прямой контакт между местом заземления и источником питания;
  • T — прямая связь с грунтом.

После дефиса стоят буквы, указывающие на метод функционирования защитного PE и рабочего N нулевых проводников:

S — работа проводников обеспечивается единственным PEN-проводником;

C — имеется несколько проводников.

Основные схемы устройства заземления
Основные схемы устройства заземления

Система TN

Заземление разновидности TN включает подсистемы TN-C, TN-S, TN-C-S. Самая старая из этих подсистем — TN-C — применяется в 3-фазных четырехпроводных и 1-фазных двухпроводных электросетях. Такие сети обычно есть в старых строениях. При всей своей простоте и относительно невысокой стоимости система не обеспечивает достаточного уровня безопасности, а потому в новостройках не используется.

Подсистема TN-C-S применяется при реновациях старых зданий. Она актуальна там, где рабочий и защитный проводники объединены на вводе. Использование TN-C-S необходимо для реконструкции системы, когда в старом строении устанавливается компьютерное или телекоммуникационное оборудование. Данное заземление представляет собой переходный тип между TN-C и самой современной подсистемой — TN-S. TN-C-S — относительно безопасная и доступная финансово заземлительная схема.

Отличием подсистемы TN-S от других типов такого оборудования является местонахождение рабочего и нулевого проводников. Они установлены по отдельности, при этом нулевой защитный PE-проводник объединяет все имеющиеся токопроводящие элементы электрической установки. Во избежание дублирования создают трансформаторную подстанцию, оснащенную основным заземлением. Дополнительное преимущество подстанции состоит в возможности уменьшить протяженность проводника, идущего от входа кабеля в оборудование до заземлителя.

Заземление многоквартирного дома по схеме TN-S
Заземление многоквартирного дома по схеме TN-S

Система TT

В данной системе заземления токоведущие открытые элементы непосредственно контактируют с грунтом. При этом электроды не зависят от заземлительного устройства нейтрали подстанции. TT применяется, когда по техническим причинам нельзя построить систему TN.

Система IT

В этой системе нейтраль источника питания не касается земли или заземляется с помощью электроустановки с повышенным сопротивлением. Схема популярна в ситуациях, когда необходимо подключение чувствительной аппаратуры (больницы, лаборатории и т.п.).

Защита электроустановок по схеме IT
Защита электроустановок по схеме IT

Источники

  • https://StrojDvor.ru/elektrosnabzhenie/princip-raboty-i-otlichiya-zazemleniya-ot-zanuleniya/
  • https://saucyintruder.org/zazemlenie-i-zanulenie-elektroustanovok/
  • https://amperof.ru/bezopasnost/raznitsa-zanulenie-zazemlenie.html
  • https://encom74.ru/v-cem-raznica-mezdu-zanuleniem-i-zazemleniem-v-elektroustanovkah/
  • https://homius.ru/zazemlenie-i-zanulenie-v-chem-raznitsa.html
  • https://eti.su/articles/spravochnik/spravochnik_1849.html
  • https://pue8.ru/elektricheskie-seti/362-zazemlenie-i-zanulenie-elektroustanovok.html
  • https://FishkiElektrika.ru/zaschitnoe-zazemlenie-i-zanulenie
  • https://ProFazu.ru/provodka/bezopasnost-provodka/zazemlenie-i-zanulenie-v-chem-raznitsa.html
  • https://34rozetki.ru/montazh/zazemlenie-i-zanulenie-elektroustanovok.html
  • https://zandz.com/ru/biblioteka/sistemy_zazemlenieya_tns_tnc_tncs_tt_it/
  • https://seti.guru/zazemlenie-i-zanulenie-v-chem-raznitsa
  • https://220.guru/electroprovodka/zazemlenie-molniezashhita/raznica-mezhdu-zanuleniem-i-zazemleniem.html

[свернуть]